Graphing the conic with polar equation $r=\frac{a}{b+c \cos \theta}$ or $r=\frac{a}{b-c \cos \theta}$ or $r=\frac{a}{b+c \sin \theta}$ or $r=\frac{a}{b-c \sin \theta}$
All polar equations of the above four types correspond to conics with the pole as a/the focus
[1] Multiply numerator and denominator of the polar equation by $\frac{1}{b}$ to get a constant term of 1 in the denominator The equation then becomes $r=\frac{A}{1+e \cos \theta}$ or $r=\frac{A}{1-e \cos \theta}$ or $r=\frac{A}{1+e \sin \theta}$ or $r=\frac{A}{1-e \sin \theta}$
[2] The eccentricity (e) is the absolute value of the coefficient of the trigonometric function in the denominator.
If $e=1$, the conic is a parabola.
If $0<e<1$, the conic is an ellipse.
If $e>1$, the conic is a hyperbola.
The numerator (A) is the eccentricity (e) multiplied by the distance from the pole/focus to the directrix (p).

$$
A=e p, \text { so } p=\frac{A}{e} .
$$

If the equation involves $\cos \theta$ in the denominator, then the directrix is vertical $(x=p)$.
If the equation involves $\sin \theta$ in the denominator, then the directrix is horizontal $(y=p)$.
If the coefficient of the trigonometric function in the denominator is positive,
the directrix is to the right of $(x=p)$ or above $(y=p)$ the pole/focus.
If the coefficient of the trigonometric function in the denominator is negative,
the directrix is to the left of $(x=-p)$ or below $(y=-p)$ the pole/focus.
The directrix is NEVER an axis of symmetry.
Part of the conic lies between the pole/focus and the directrix.
That part of the conic always curves around the pole/focus away from the directrix.
[3] Plot the points corresponding to $\theta=0, \frac{\pi}{2}, \pi, \frac{3 \pi}{2}$.
These are the x - and y-intercepts of the conic.
NOTE: If the conic is a parabola, one of the four points will NOT exist.
The latus rectum passes through the pole/focus,
and connects the two intercepts above which are reflections of each other through the pole/focus.
That is, the two intercepts whose rectangular co-ordinates are negatives of each other.
The other point (points) is (are) the vertex (vertices).
If the conic is an ellipse or a hyperbola:
[4] The center is the midpoint of the vertices. The pole/focus is NEVER the center.
[5] The center is also the midpoint of the two foci.
Double the co-ordinates of the center to get the other focus.
[6] The other latus rectum passes through the other focus and is symmetric to the first latus rectum.
The ends of the other latus rectum share a non-zero co-ordinate with the other focus, and a non-zero co-ordinate with the ends of the first latus rectum.
[7] Use the vertices and the ends of the latera recta to sketch the conic.
[1] $r=\frac{12}{2-4 \sin \theta} \times \frac{\frac{1}{2}}{\frac{1}{2}}=\frac{6}{1-2 \sin \theta}$
[2]
$e=|-2|=2>1 \Rightarrow$ hyperbola
$6=e p=2 p$, so $p=3$.
Since the equation involves $\sin \theta$ in the denominator, and the coefficient of $\sin \theta$ in the denominator is negative, therefore the directrix is horizontal and below the pole/focus at $y=-3$.

[3]

θ	0	$\frac{\pi}{2}$	π	$\frac{3 \pi}{2}$
$r=\frac{12}{2-4 \sin \theta}$	6	-6	6	2
(x, y)	$(6,0)$	$(0,-6)$	$(-6,0)$	$(0,-2)$

The latus rectum connects $(6,0)$ and $(-6,0)$.
The vertices are $(0,-6)$ and $(0,-2)$.

[4] The center is $\left(\frac{0+0}{2}, \frac{-6+-2}{2}\right)=(0,-4)$.

[5] The other focus is $(2 \times 0,2 \times-4)=(0,-8)$.

[6] The other latus rectum passes through $(0,-8),(6,-8)$ and $(-6,-8)$.

[7] Final result

